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Abstract 

This paper reports on a research study of 45 classes in US schools (grades 3–8) using 

Zoombinis, a popular Computational Thinking (CT) learning game for ages 8 to adult. The 

study examined the relationship among student gameplay, related classroom activity, and 

the development of students’ CT practices in Zoombinis classes. A combination of research 

methods, including educational data-mining on game data logs, cluster analysis on teacher 

logs of classroom activity, and multilevel modeling, was used to determine the impact of the 

duration and nature of student gameplay, as well as the extent and nature of classroom 

activity, on student CT practices. Automated detectors of gameplay CT practices built for 

this research were significant predictors of external post-assessment scores, and thus show 

promise as implicit assessments of CT practices within gameplay. Students with high 

duration of gameplay and high gameplay CT practices scored highest on external post-

assessment of CT practices, when accounting for pre-assessment scores. This research 

suggests that Zoombinis is an effective CT learning tool and CT assessment tool for 

elementary- and middle-school students. 

Keywords: computational thinking, assessment, game-based learning 

 
 
 

1. Introduction 

The objective of this study was to examine the development of CT Practices among students in 45 

classes in grades 3–8 across the US using the learning game Zoombinis on tablets or web browsers, 

along with accompanying teacher-led activities that bridged the implicit Zoombinis game-based 

learning with explicit CT practices in class. We administered a set of pre/post CT assessments 
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before and after the Zoombinis classroom experience to measure the impact of the experience on 

student CT practices. This paper reports on the relationship among the duration and nature of 

students’ gameplay, the extent and nature of related teacher activity within Zoombinis classrooms, 

and students’ development of CT practices as measured by the pre/post assessments. In this study, 

a set of automated detectors of CT practices from students’ Zoombinis gameplay logs is compared 

to external pre/post assessments of the same CT practices. The results of this research provide a 

better understanding about how CT learning games can improve classroom CT practices and how 

automated detectors of CT practices within gameplay can be used as a novel form of assessing CT. 

 

1.1 Background on Game-Based Learning and Assessment 

Over the past decade and more, Game-based Learning (GBL) has shown to be effective classroom 

pedagogy for engaging diverse learners in a broad range of complex educational activities 

including scientific inquiry (Steinkuehler & Duncan, 2008; Asbell-Clarke et al., 2012), 

argumentation (Bertling, Jackson, Oranje, & Owen, 2015, June), and civics (Stoddard, Banks, 

Nemacheck, & Wenska, 2016). Digital games engage a broad audience of learners in compelling 

and often complex play that can foster high-level reasoning, inquiry, persistence, and creativity 

(Green & Kaufman, 2015; NRC, 2011; Shute et al., 2015). While GBL has attracted many 

researchers because of the natural motivation and “stickiness” of games, one of the most 

compelling reasons to use games in classrooms is because of the powerful potential of game-based 

learning assessments (GBLA). Because digital games allow digital records of players’ activity, 

researchers can use learning analytics to identify common patterns of players’ behaviors in the 

game that are consistent with the intended learning outcomes (Kim, Almond, & Shute, 2016; Fu, 

Zapata, & Mavronikolas, 2014; Rowe, Asbell-Clarke, & Baker, 2015). 
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GBLA builds on the idea of stealth assessments (Shute, 2011) where learning is measured within 

an everyday activity, namely playing a digital game. Plass and colleagues (2015) emphasize that 

learning and assessment through games rely on a close alignment among: the game mechanics—

the rules and controls the player interacts with in the game; the learning mechanics—the processes 

through which the designer intends the player to build knowledge; and the assessment 

mechanics—the behaviors that provide evidence of learning in the game. GBLA has often focused 

on the method of Evidence Centered Design (Mislevy & Riconscente, 2011), where the researchers 

prescribe a task competency model within the game and collect data to measure student 

performance directly related to that task. 

Our team uses a modified method of Evidence Centered Design to measure implicit knowledge, 

knowledge that is not articulated by the learner but may be foundational to the development of 

explicit knowledge (Asbell-Clarke, Rowe, Bardar, & Edwards, 2019; Polanyi, 1966). The 

measurement of implicit learning is key to understanding how we support and measure learning 

(Brown, Roediger, & McDaniel, 2014; Underwood, 1996), yet implicit knowledge is not well 

studied in educational research. Employing novel techniques in learning analytics to measure 

anticipated and unanticipated evidence of learning help build formative assessments that are more 

inclusive to a broad and diverse audience of learners (Rowe, Asbell-Clarke, & Baker, 2015; Rowe 

et al., 2017; Rowe et al., 2019; Shute, Rahimi, & Smith, 2019). The outcome of this method, which 

is described in detail in Rowe et al. (under review), is a set of validated detectors that can reliably 

and automatically detect strategies and practices within gameplay that have been identified and 

coded by teams and researchers through extensive observations. 

GBL is particularly powerful in classrooms where teachers actively bridge the implicit learning 

their students experience in the game with explicit learning through related classroom activities 
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(Asbell-Clarke et al., 2019; Ash, 2011; Ke, 2009; Lederman & Fumitoshi, 1995). Teachers may 

build on the games’ “aha” moments and help their students make connections between their actions 

in games and the content being covered in the classroom. This model of bridging draws upon the 

notion of the “big G” game notion put forth by Gee (2013) that suggests that social game-related 

experiences occurring outside the game may be critical to the game-based learning, as well as the 

model of Preparation for Future Learning (PFL) from Bransford and Schwarz (1999), which 

considers “transfer in” and “transfer out” of knowledge and learning experiences. Transfer in is 

the prior knowledge learners bring to a learning experience and transfer out is how they apply that 

learning to other situations. Teachers, peers, or other scaffolds can facilitate the transfer from 

implicit learning in a game to useful knowledge in the classroom, workplace, or elsewhere, but 

this is a feat with significant challenges and barriers (Fishman, Riconscente, Snider, Tsai, & Plass, 

2014; 2015). 

 

1.2 Background on Computational Thinking 

First introduced by Jeanette Wing (2006), the term CT was originally described as the thought 

processes involved in formulating problems and their solutions so that the solutions are represented 

in a form that can be effectively carried out by an information-processing agent (Cuny, Snyder, & 

Wing, 2010). As the need for a computationally literate workforce grows, CT is attracting 

increased attention in K–12 education, prompting a call for new models of pedagogy, instruction, 

and assessment (Barr & Stephenson, 2011; Grover & Pea, 2018; Shute, Sun, & Asbell-Clarke, 

2017). The role of CT in K–12 education has been described as laying “the conceptual foundation 

required to solve problems effectively and efficiently (i.e., algorithmically, with or without the 
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assistance of computers) with solutions that are reusable in different contexts” (Shute, Sun, & 

Asbell-Clarke, 2017).  

CT has roots in early work such as Seymour Papert’s research on procedural thinking exhibited in 

the early programming environment for children called LOGO (Papert, 1980; Papert & Harel, 

1991), but CT encompasses much more than programming in today’s technological society. CT is 

often described as a set of thinking practices that may include: problem decomposition, abstraction, 

algorithmic thinking, conditional logic, recursive thinking, and debugging. There is evidence that 

these CT practices may support a variety of other cognitive and non-cognitive activities, especially 

for learning in STEM subjects (e.g., Barr & Stephenson, 2011;  Sneider, Stephenson, Schafer, & 

Flick, 2014).  

The operationalization of CT practices in Zoombinis gameplay in this study focus on four CT 

practices outlined by CSTA (2017) and Shute, Sun, & Asbell-Clarke (2017). While not an 

exclusive definition of CT, a focus on these practices lays a strong foundation for CT which may 

also include applications such as coding, debugging, and modeling (CSTA, 2017): 

● Problem Decomposition is reducing the complexity of a problem by breaking it into 

smaller, more manageable parts. 

● Pattern Recognition is seeing trends and groupings in a collection of objects, tasks, or 

information. 

● Abstraction is generalizing from observed patterns and making general rules or 

classifications about objects, tasks, or information by discerning relevant from irrelevant 

information. 

● Algorithm Design is establishing reusable procedures that solve sets of problems. 
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1.3 Background on Computational Thinking and Games 

A variety of digital and non-digital games has been used to engage learners in CT practices as 

well as computer programming. Weintrop and colleagues (2016) found that the CT practices 

learners developed in construction games, computational problem-solving that was distinct from 

coding, became central to the way learners reflected and created code and learned programming 

concepts. Some games have used a robotics context (Berland & Lee, 2011; Kazimoglu, Kiernan, 

Bacon, & Mackinnon, 2012). Studying computational problem-solving in a racing game, 

researchers studied procedural thinking (the breaking down of problems into steps), which is 

strongly related to the CT practice of Problem Decomposition (Holbert and Wilensky, 2010). 

Researchers have also used video coding to study how players’ CT practices developed with 

during iterative problem-solving in battles (Holbert, 2013). This literature on CT, game-based 

learning assessments, and CT in games lays the groundwork for the following research study of 

the game Zoombinis with elementary- and middle-school classes (grades 3–8). 

 

2. Description of the Materials  

2.1 Description of the Game 

In the 1990s, two educational designers (Scot Osterweil and Chris Hancock) saw the need for a 

learning game that helped build problem-solving skills dealing with computer science, the 

practices and skills later coined as Computational Thinking (CT) by Wing (2006). The Logical 

Journey of the Zoombinis was the first in a series of three computational thinking games they 

designed. In 2015, the popular, award-winning, learning game was renamed to simply Zoombinis 

and was relaunched for mobile and desktop platforms, and a web version was developed soon after 

as part of this research (TERC, 2019).  
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Zoombinis consists of a series of 12 puzzles, each with four levels of complexity, in which players 

are charged with bringing packs of Zoombini characters (16 at a time) to safety. Each Zoombini 

has one of five different types of hair, eyes, nose, and feet (Figures 1). In many of the puzzles, 

such as Allergic Cliffs (Figure 2) and Bubblewonder Abyss (Figure 3), players use these 

combinations of attributes to solve puzzles that require sorting, matching, and sequencing of the 

Zoombinis. Other puzzles in the game apply similar logic and CT practices in different contexts, 

such as Pizza Pass where players identify the exact combination of pizza toppings to satisfy 

hungry, but picky, trolls (Figure 4), or Mudball Wall where players complete a multi-dimensional 

grid with paint balls of different shapes and colors (Figure 5). 

This study had students focus on four puzzles in the game: Allergic Cliffs, Pizza Pass, Mudball 

Wall, and Bubblewonder Abyss, though students were able to play the entire game if desired. Our 

research team only had time to build CT detectors for the first three of these puzzles. 

 

 
Figure 1: Image of Zoombinis 
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Figure 2: Allergic Cliffs Puzzle where the Zoombinis with flat top hair have all crossed the top 
bridge and all other values of hair have crossed the bottom bridge. One can infer at this point that 
the bottom bridge is allergic to flat-top hair. 
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Figure 3: Bubblewonder Abyss puzzle is a maze with safe and dangerous paths that depend on 
Zoombinis’ attributes, and can sometimes be switched with use.   
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Figure 4: Pizza Pass Puzzle where each troll likes a specific combination of pizza and sundae 
toppings. Those in the pit in front are rejected, and those on the rocks in back have some 
toppings they like but not everything they like. 
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Figure 5: Mudball Wall Puzzle where paintballs of colors and shapes are launched to hit cells 
with dots, which then launch the Zoombinis to safety. 
 
 

2.2 Description of Classroom Bridging Activities  

To prepare teachers for bridging during our implementation studies, we gave them examples from 

gameplay along with discussion activities that leverage ideas from the gameplay as described in 

detail by Rowe, Bardar, and Asbell-Clarke (2015). Teachers were also encouraged to blend in 

other CT activities such as coding, as desired. Previous research examples of bridging activities 

included (excerpted from Asbell-Clarke et al., 2019): 

 Showing video clips from gameplay as part of class discussions of strategies 

 Playing the game jointly and discussing strategies and concepts 
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 Physically re-enacting puzzles or scenarios from the game in the classroom 

 Explaining classroom content in context of game storylines, characters, and/or strategies 

 Connecting game storylines and puzzles to real-world examples 

 Playing board games with similar learning mechanics and discussing similarities 

 Using scaffolds during gameplay that overlap with tools used in other contexts, such as 

data tables and charts 

 Using clear, consistent terminology across gameplay and non-gameplay 

 Taking on the role of the game to more deeply understand the underlying rules and how 

they relate to classroom content.  

In the study, some of the teacher activities were closely connected to the game, such a physical 

recreation of a Zoombinis puzzle where some students enact the rules underlying the puzzle (e.g., 

which attributes are rejected by which bridge), and other students are the Zoombinis who are 

attempting to cross. This type of bridging activity allows collaboration, and sharing of practices 

and information that may not take place in online gameplay and may support some students who 

need help. Other bridging activities included video walkthroughs of the puzzles where teachers 

could suggest ways of organizing data in a data table for more effective puzzle-solving.  

Bridging activities also encourage conversations in class that allow the teacher to become very 

explicit with CT, naming the problem decomposition, pattern recognition, abstraction, and 

algorithm design as they see it. For example (excerpted from Asbell-Clarke et al., 2019), a teacher 

might ask the following types of questions (with typical student responses in italics). 
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Problem Decomposition: What is the big problem we want to solve? To get our Zoombinis across 

the bridges. So what part of that problem do we want to solve first? Let’s see if the blue shoes will 

go over the top bridge. 

Pattern Recognition: Do we have enough information to recognize any patterns in what we’ve 

already done? The blue shoes are all making it over the top bridge. Teachers may introduce 

conditional language here. They can structure their questions to lead students towards saying “IF 

the Zoombini has blue shoes, THEN it will go over the top bridge.” 

Abstraction: Given the pattern that we see, what do we think the general rule is for this puzzle? 

Zoombinis with blue shoes go over the top bridge, and all other Zoombinis go over the bottom 

bridge. 

Algorithm Design: What types of strategies do you use that help you solve this puzzle? I always 

start with shoes and go through all the different types first, then I try noses, then hair. A teacher 

can use this as an opportunity to describe this as an example of an algorithm that the student has 

designed in their head. 

Other bridging activities included activities that connected the CT practices in Zoombinis to other 

contexts such as collecting data in a science experiment, solving a math problem, or other puzzle 

games (e.g., Mastermind, Guess Who?). During the study, teachers were also encouraged to use 

other CT activities of their choosing. Some teachers used online and/or offline activities from Hour 

of Code, or used the Scratch programming environment. 
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2.3 Building Implicit Learning Assessments in Zoombinis 

To build implicit learning assessment mechanics for the key CT practices in Zoombinis, we used 

the model by Plass and colleagues (2015) to identify specific game mechanics, learning mechanics, 

and assessment mechanics that are aligned with the CT practices in each puzzle. The CT practices 

studied are: Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. 

Table 1 shows how each of these practices are operationalized in the game mechanics (what the 

player does) with the learning mechanics (what the designer intends the player to learn), and the 

assessment mechanics (evidence within gameplay that reveals learners’ understanding).  

Table 1: Operationalization of CT Practices in Zoombinis shown through the alignment of the 
game mechanics, learning mechanics, and assessment mechanics of the game. 
 

 Game Mechanic Learning Mechanic Assessment Mechanic 

Allergic Cliffs Figure out which 
Zoombini attributes can 
cross which bridge 
without getting 
“sneezed” back. In the 
example shown (Figure 
2), the bottom cliff is 
allergic to flattop hair 
and the top cliff is 
allergic to all other hair 
types.  
 

 Decompose problem into attributes 
and values. 

 Systematically test for patterns of 
values of attributes that cross each 
bridge.  

 Abstract patterns to a general 
solution about the attributes.  

 Design algorithms to solve similar 
problems in repeated puzzles.  

 Holding one 
attribute constant 
while testing 
others. 

 Testing one value 
of each attribute. 

 Continuing with 
one value/attribute 
until all crossed or 
one is rejected. 

 

Pizza Pass Figure out what type of 
pizza (and ice cream 
sundae in higher levels) 
will satisfy the hungry 
trolls (Figure 3). They 
will each accept only a 
unique combination of 
toppings.  

 Decompose problem into toppings 
for each troll. 

 Systematically test for preferred 
combinations of patterns. 

 Abstract patterns to an acceptable 
recipe for pizza and ice cream.  

 Design algorithms to solve similar 
problems in repeated puzzles. 

 Testing one 
topping at a time. 

 Adding one 
topping at a time 
cumulatively. 

 Starting with all 
toppings and 
reducing one at a 
time. 

Mudball Wall Figure out how colors 
and shapes of mudballs 
correspond to rows and 
columns on the wall 
(Figure 4), then hit the 
cells with dots.  
 

 Decompose grid into rows and 
columns. 

 Systematically test for pattern of 
color/shape with row/columns. 

 Abstract patterns to hit all the cells 
with dots.  

 Testing one 
row/column at a 
time.   

 Using diagonal 
pattern to get 
row/column info 
simultaneously. 
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 Design algorithms to solve similar 
problems in repeated puzzles.

Bubblewonder 
Abyss* 

Get Zoombinis through a 
maze with junctions and 
switches triggered by 
Zoombini attributes 
(Figure 5).  

 Decompose maze into successful and 
unsuccessful paths 

 Predict sequence of each path for 
constant and variable danger points. 

 Abstract solutions for safe attributes 
of Zoombinis for each path. 

 Design algorithms to solve similar 
problems in repeated puzzles. 

 Grouping 
Zoombinis by 
attribute for 
sequencing 

 Holding one 
attribute constant, 
or sequencing back 
and forth with a 
trigger. 

* While Bubblewonder Abyss was part of the participants’ activity and data were collected, we were unable to build 
implicit learning detectors of CT practices in Bubblewonder within the scope of this project. 
 

3. Research Methods 

3.1 Research Questions 

The research questions explored in this study include:  

1. How is student development of CT practices impacted by: 

a. The duration of a student’s gameplay in Zoombinis? 

b. The CT practices exhibited by the student in their Zoombinis gameplay? 

c. The extent and nature of CT classroom activities reported by the teacher during the 

study period? 

d. Student and classroom characteristics? 

2. Do the automated detectors built to study the CT practices exhibited by the student in their 

Zoombinis gameplay significantly predict student development of CT practices? 

Based upon previous research, we hypothesize that students’ CT practices measured outside the 

game would be positively impacted by longer duration of student gameplay and by higher 

exhibition of CT practices in the game. We also hypothesize that greater extent of teachers’ 

bridging activities would positively impact students CT practices, but we do not have reason to 

believe any one type of bridging activity will be more impactful than others. That is an open 
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question of this research. Finally, we hypothesize that there may be differences in student 

outcomes related to gender (as girls are typically underrepresented in computer science), as well 

as whether or not the student is on an Individual Education Plan (IEP) for academic difficulties. 

 

3.2 Data Sources 

To study these questions, we collected digital gameplay logs, teachers’ daily logs of classroom 

activity, student demographic data, and pre/post external assessments of students’ CT practices. 

We used these data to measure: 

 Student Gameplay Duration—the total amount of time each player spent playing 

Zoombinis 

 Gameplay CT Practices—the strategies and implicit CT practices that were evident in 

student gameplay logs 

 Extent of Bridging in Class—the amount of class-time teachers spent on activities 

related to CT 

 Nature of Bridging in Class—the type of CT-related class activities reported by 

teachers 

 CT Outcomes – Changes in students’ CT practices measured independently of the 

game.  

3.3 Research Sample 

The initial sample of students consisted of 1,271 students belonging to 36 teachers across 57 

classes. To participate, teachers met the following criteria during the study period:  

 They are an elementary- or middle-school educator (grades 3–8) in the US. 
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 They teach at least one class that supports CT through logic, coding, or preparation for 

coding (e.g., math, science, computer science, tech. ed., etc.). 

 Their students have access to Internet-enabled computers to take the pre- and post- 

assessments required for the study. 

 They complete a teacher agreement outlining the study requirements. 

 They obtain administrative approval to participate in the study. 

From the initial sample, 495 students (39%) were dropped because they were missing either pre- 

or post-assessment scores. This included cases where the student completed items for all four CT 

Practices on the pre-assessment, but only completed the first item on the post. An additional 60 

students (5%) were excluded because of other missing data such as missing teacher logs or game 

data. Further details can be found in an online appendix at https://bit.ly/2X19C1H.   

The final sample of students consisted of 716 students (476 elementary students, 48% female; 240 

middle school students, 40% female) with complete pre- and post-assessments belonging to 32 

teachers across 45 classes. The final student sample was about 66% elementary students, 46% 

female, and 46% enrolled in Title I schools. The majority (76%) of the 32 teachers taught in public 

schools in 10 states, with 72% reporting more than 10 years of teaching experience. 

 

3.4 Organization and Labeling of Gamelog Data 

All student assessment and gamelog data were collected through our team’s game data-collection 

architecture, which was purposefully designed and built to collect, organize, and visualize data 

collected from game activity. As part of this architecture, an API is built into the game, allowing 

each player’s game activity and every corresponding game event to be logged and associated with 
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a timestamp and a unique (and anonymous) player ID. Over multiple GBLA studies, the authors 

have designed a suite of tools with the data architecture to enable: 

 Registration of players by classes or individuals 

 Synchronization of game data with other sources (e.g., surveys, external pre/post 

assessments, and multimodal sensory data streams)  

 Visualization of game replay using data logs 

 Preparation of game data for use by automated data-mining detectors. 

As part of previous GBLA studies, we designed a playback tool for visualization of the gameplay 

data to allow efficient human analysis of gameplay. The playback tool uses the gameplay data log 

to recreate and display the game in a window with a series of menus below that researchers use for 

hand-labeling of the data. Unlike on video recordings, with the playback tool researchers can easily 

scrub through the playback timelines to find events and the playback tool snaps to an event to 

avoid time-consuming and tedious time synchronization tasks. Researchers can also customize the 

labeling tool for different puzzles and different games. The playback tool was used for the hand-

labeling of all Zoombinis gameplay, allowing a broader sample than with video recordings and 

more extensive hand-labeling. The resulting hand-labeling of the Zoombinis data was used as 

empirical grounding to build automated detectors of the strategies and CT practices evident in 

student gameplay. Thousands of rounds of gameplay were double-labeled by independent 

researchers, resulting in a set of kappas for each label (Rowe et al., 2017; 2019). The hand-labeling 

of the Zoombinis data was used as empirical grounding to build automated detectors of the 

strategies and CT practices evident in student gameplay. Only labels with kappas exceeding 0.70 

were used in the automated detectors. 
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3.5 Measures 

3.5.1 Student Measures 

3.5.1.1 IACT Assessments  

To serve as external pre- and post-assessments of CT, the authors worked with a game-based 

learning company to design Interactive Assessments of CT (IACT)—a set of logic puzzles to 

assess CT practices in upper elementary and middle school (see Asbell-Clarke et al., in review). 

We designed our own assessments because we could not find established instruments in the 

beginning of the study that focused on the four CT practices of interest. Also for inclusivity, we 

were particularly interested in building assessments that would look at implicit CT practices 

without relying on text or coding, which may be a barrier for some students. In a larger study using 

an augmented sample, we found moderate evidence of concurrent validity (r=0.29 with teacher 

ratings in the Zoombinis sample; r=0.40 with Bebras items among students in grades 5–8 in the 

RPP samples) and test-retest reliability (r=0.55 and 0.34 for aggregated measure in Zoombinis and 

RPP samples, respectively) for IACT. A more comprehensive summary of these findings and the 

limitations of this measure are described in detail in Asbell-Clarke et al. (in review).  

For the study reported on in this paper, pre/post assessment scale scores were calculated for the 

IACT logic puzzle items as the means of items per CT practice: Problem Decomposition, Pattern 

Recognition, Abstraction, and Algorithm Design. Table 2 shows the scoring for each CT practice. 

 

Table 2: Scoring of IACT assessment items for each CT practice 

CT Practice Number of items Measure used for scoring 

Problem Decomposition 4 
Mean efficiency (minimum number of moves 

needed to solve / number of moves taken)  
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Pattern Recognition 5 Mean number of correct responses  

Abstraction 6 
Mean percentage of array spaces completed 

correctly 

Algorithm Design 3 
Mean efficiency (minimum number of moves 

needed to solve / number of moves taken)  

 

Aggregated CT 
18 Average of Z-scores of 4 CT measures above 

 

The items on the middle-school form of IACT were designed to be more difficult than the items 

on the elementary form, involving larger grids and longer sequences of moves to complete. For 

this reason, the standardization of each CT practice was calculated using the means for each form. 

This ensured each form had a mean of 0 and a standard deviation of 1. Tables 3 and 4 present the 

means and standard deviations used to standardize the elementary- and middle-school forms on 

the IACT pre and post-assessments.   

 

Table 3: Means and standard deviations of IACT pre-assessment by form 

 

CT Practice 

Elementary Form (N=1460 

to 1523) 

Middle-School Form 

(N=784 to 893) 

Mean S.D. Mean S.D. 

Problem Decomposition (mean efficiency) 0.90 0.12 0.91 0.13 

Pattern Recognition (% correct) 0.73 0.25 0.33 0.24 

Abstraction (% spaces correct) 0.91 0.13 0.66 0.24 

Algorithm Design (mean efficiency) 0.86 0.20 0.75 0.26 

 

Table 4: Means and standard deviations of IACT post-assessment by form 
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CT Practice 

Elementary Form 

(N=1083 to 1174) 

Middle School Form 

(N=546 to 599) 

Mean S.D. Mean S.D. 

Problem Decomposition (mean efficiency) 0.94 0.09 0.95 0.09 

Pattern Recognition (% correct) 0.77 0.23 0.36 0.25 

Abstraction (% spaces correct) 0.93 0.11 0.68 0.26 

Algorithm Design (mean efficiency) 0.90 0.16 0.84 0.23 

 

The first step in creating an aggregate measure of CT was standardizing the means of each item 

type to produce a Z-score for each CT practice on each form (elementary vs. middle school). This 

is to take into account that the middle-school form was designed to be more difficult than the 

elementary form.  

The second step in creating an aggregated measure was averaging standardized means from each 

CT practice. The units shown in Table 4 are the number of standard deviations from the mean Z-

score of the four CT practices. There were no significant differences by form in the standardized 

IACT pre- and post-scores. 

To examine measurement invariance across form (elementary vs. middle school) and time (pre 

and post), we performed 3 types of preliminary analyses.  First, the correlations between each CT 

practice were correlated with the aggregate CT measure. Second, we compared test-retest 

reliability of the aggregate measures.  Third, to assess concurrent validity, we correlated the 

aggregate measure with external teachers of their students’ CT practices.  Each of these analyses 

was done across for each time*form combination. 
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The correlations of each CT practice with the aggregate CT measure were comparable across forms 

and times, exceeding 0.60 in all cases. Further details can be found in an online appendix at 

https://bit.ly/2X19C1H.  Only the correlations between Algorithm Design on the post-test 

significantly differed by form (0.6 for elementary; 0.75 for middle school). 

For test-retest reliability and concurrent validity, we found significant differences by form.  In both 

analyses, the correlations were stronger on the Elementary form than the Middle School form 

suggesting results from these measures might be more valid for elementary students than middle 

school students (see Limitations). 

3.5.1.2 Duration of Student Gameplay 

Each time a student opened Zoombinis, that time was added to a cumulative duration of Student 

Gameplay. This does not guarantee students played the entire time the game was open, but our 

assumption is the majority of this time was spent playing. Students in this study played Zoombinis 

between 19 minutes and 658 hours over the course of the school year (Figure 6), with a mean of 

21 hours and median of 4.8 hours. As the difference between the mean and median suggest, there 

were 8 students with outlying values (above the 99th percentile). To limit the influence of outlier 

values, we tried mixed models using several different game duration values to split students into 

groups (quartiles, median, 1 hour, 2 hours, 5 hours). The 2-hour boundary provided the largest 

improvement in model fit and was retained. 
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Figure 6: Histogram of Game Duration 

3.5.1.3 Student Gameplay CT Practices 

As described in 1.3, 2.2, and 2.3, researchers created implicit measures of Students’ Gameplay CT 

Practices using an emergent GBLA method developed and refined with other games (Rowe et al., 

2019).  There are six key steps in this process (Figure 7): 

 
 

  
Figure 7. Graphical representation of the six-step emergent approach to GBLA (Source: Rowe et al., 

2019) 
 

Although the bridging materials and classroom implementation of Zoombinis included four 

puzzles, the research team only hand labeled the data from three of these puzzles. As described in 

more detail in Rowe et al. (under review), researchers reliably labeled the four CT practices of 
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interest in students’ gameplay in the three puzzles: Allergic Cliffs, Pizza Pass, and Mudball Wall. 

We also reliably labeled instances when students’ behavior suggested they were still learning the 

game mechanic for each puzzle (e.g., repeating the same pizza in Pizza Pass or same mudball in 

Mudball Wall). We combined the evidence of strategies, CT practices, and learning game 

mechanic from human-labeling with salient features from the game logs to build automated 

detectors for each CT practice and Learning Game Mechanic across these three puzzles.  

For each game behavior, we attempted to fit the detectors using four common classification 

algorithms (W-J48, W-J-Rip, Step Regression, Naïve Bayes) used in detecting affect and 

engagement in computer-based learning environments (Kai et al., 2015; Paquette et al., 2016) and 

in our prior work detecting implicit physics learning (Rowe et al., 2017). To the best of our 

knowledge, no other study has reported automated CT practice detectors from gameplay. These 

classification algorithms allowed us to predict whether or not a student is demonstrating CT 

practices as identified with the human-applied labels. Early results with the Mudball Wall detectors 

performed at level of quality higher than seen in many medical applications (Almeda et al., 2019; 

Rowe et al., 2019), suggesting that these could be used to deploy as in-game assessments to reveal 

students’ implicit learning. Subsequent correlations of all Student Gameplay CT Practices 

detectors and external CT assessments were found to provide moderate to strong evidence of 

convergent validity (Rowe et al., under review). The Learning Game Mechanic detector is 

negatively correlated with the CT practice detectors (r=-0.36, p<0.001), suggesting students who 

were still learning the game mechanic were less likely to display evidence of CT in their game 

behaviors.   

The detectors of Student Gameplay CT Practices were applied to the final sample of Zoombinis 

gameplay logs from 716 students in this study. Our validated detectors do not only produce an 
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inference of whether implicit CT practices are present or absent in student gameplay logs, but also 

produce a confidence in that inference. For example, if the Problem Decomposition detector has a 

confidence of 80% for a round of Zoombinis gameplay, this indicates that there is an 80% 

probability that the student was demonstrating this CT practice in that round. When averaged 

across all of their play, average confidences indicate higher prevalence of the CT practices in their 

gameplay. 

For this study, we created aggregated measures of each CT practice using the confidence levels 

from the detectors in the following ways.  

Problem Decomposition: We averaged across the three puzzles, including the two detectors within 

Mudball Wall (implicit and explicit problem decomposition).  

Pattern Recognition: We averaged across detectors, one per puzzle.  

Abstraction: We averaged across detectors, one per puzzle.  

Algorithm Design: For each puzzle, we found the maximum detector confidence from all 

strategies, with the exception of two detectors. 2-D Pattern Completer, a Mudball Wall detector, 

was discarded based on results presented in Rowe et al. (under review). Hold Attribute and Hold 

Value Constant, an Allergic Cliffs detector, was also not included because it did not reliably 

distinguish which students were demonstrating this strategy. We then averaged those confidences 

across the three puzzles as an indicator of their strategy (algorithm) used across puzzles during 

gameplay.  

Because of the significant negative correlation between Learning Game Mechanic and the four CT 

Practice detectors, an aggregate Learning Game Mechanic measure was created by averaging the 

detectors across the three puzzles and then subtracting from 1 (i.e., reverse coding). This results in 

a fifth CT Practices Detector where 0 means CT practices are absent and Learning Game Mechanic 



 27

is present and 1 means CT practices are present and Learning Game Mechanic is absent. These 

will be referred to as the Student Gameplay CT Practices. 

We created a mean confidence level (mean=0.63, S.D.=0.09) across all five detectors based on the 

average confidence of each CT practice. The greater the average confidence, the higher the 

likelihood that students were exhibiting in-game behaviors consistent with CT practices and not 

exhibiting evidence they were still learning the game mechanic. 

3.5.2 Measures of Student, Classroom, and School Demographics  

We collected the following types of data from teacher application surveys and the Common Core 

of Data (Common Core of Data, 2020):  

Student demographics: Gender 

Classroom demographics: Subject Area (computer science, technology/robotics, math, science)  

School demographics: School Type (elementary or middle school), Title I school status.  

These measures were included in descriptive and multi-level analyses as control variables that may 

have potential relationships to the student outcome measures. Most important among them is the 

school type because a more difficult form was administered to middle-school students and easier 

forms were administered to elementary students. As described above, the metrics were different 

across forms, so the standardization was done separately for elementary- and middle-school forms. 

3.5.3 Measures of Classroom Activity 

Guided by our prior experience with teachers logging about their instructional use of a physics 

game (Rowe, Bardar, Asbell-Clarke, Shane-Simpson, & Roberts, 2016), we adopted a quantitative 

approach to measuring classroom activity through multiple-choice questions with predefined 

answers about the amount of time spent on each type of activity. Teachers were asked to complete 

these logs for each day they were implementing Zoombinis. 
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We used these teacher logs to identify clusters of classes based upon the extent of their activity 

related to Zoombinis, which we call Bridging, and the extent of their use of Other CT Activities. 

Teachers completed 938 daily logs for their 57 classes in NoviSurvey software. Twelve of these 

classes were in the clustering analyses but did not have enough students with complete data to 

remain in the multi-level analyses. To identify groups of classes, we used a K-means clustering 

process where those objects belonging to the same cluster share similarities in attributes (Witten 

& Frank, 2002). Here, those objects are classes and attributes are the teachers’ reported use of 

specific instructional activities in those classes. The ultimate goal of clustering is to partition our 

sample into clusters of classrooms that reported use of specific instructional activities in a similar 

pattern, and to characterize this response pattern that distinguishes each cluster. K-means 

clustering creates a protype class and classifies each class according to the prototype it most 

resembles. This procedure maximizes differences between clusters and minimizes within-cluster 

variance, helping avoid any potential multicollinearity issues in using raw data.  

We initially anticipated clusters would form around the nature and extent of the teachers’ 

instructional activities (e.g., classes would differ on both the type and duration of specific 

Zoombinis bridging activities that were used), but this was not born out in the clustering analyses. 

Instead, classes were grouped more by their extent (duration) of Zoombinis bridging activity and 

less by the nature of that bridging activity. This means teachers distributed their class time across 

the various types of bridging activities in roughly the same proportion of class days, regardless of 

how many classes in which they used Zoombinis.  

To capture the extent that students participated in classroom activities related to CT practices, we 

created two clusters of classroom activities: (1) Zoombinis Bridging and (2) Other CT Activities. 

Zoombinis Bridging includes all classroom use of Zoombinis activities as well as discussions of 
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gameplay, be they whole class or small group. Other CT Activities is a measure of the extent to 

which teachers reported using CT classroom activities other than the Zoombinis game or 

Zoombinis bridging activities. 

3.5.3.1 Extent of Zoombinis Bridging 

To create the bridging clusters, we used K-means clustering with two clusters of instructional 

activity features derived from the teacher logs. Table 5 presents the mean of the final 16 features 

used to create the bridging clusters. 

 

Table 5: Zoombinis Bridging Clustering Results 

 

Zoombinis Bridging Activity Feature 

Cluster Means 

Low Duration 

(N=29) 

High Duration 

(N=25) 

Sum of Minimum Zoombinis Class time Activities (Hours) 3 8 

# Class Days with Zoombinis Walkthrough Videos 2 4 

# Class Days with Zoombinis Bridging Activities 4 11 

# Specific Zoombinis Activities (videos & activities) 6 10 

# Walkthrough Videos Watched 2 3 

# Specific Zoombinis Activities 3 7 

Percent of Zoombinis Walkthrough Videos Watched 56% 75% 

Percent of Specific Zoombinis Activities Used 19% 41% 

# Class Days with Whole Class Zoombinis Gameplay 2 4 

# Class Days with Small Group Zoombinis Gameplay 1 5 

# Class Days with Zoombinis Gameplay Busywork 0 1 
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# Class Days with Zoombinis Gameplay Assigned by Teachers 2 5 

# Class Days with no Zoombinis Gameplay 4 5 

# Class Days with Whole Class Discussion of Zoombinis Gameplay 3 5 

# Class Days with No Zoombinis Discussion 4 6 

# Class Days with Zoombinis Activities 4 8 

 

The main distinction between the bridging clusters is the number of class days spent doing each 

of the bridging activities (Zoombinis activities, walkthrough videos, discussions of gameplay, 

assigned gameplay). All t-test results were statistically significant at p<0.05. Students in High 

Zoombinis Bridging classes participated in a higher proportion of the Zoombinis activities, watched 

a larger proportion of the walkthrough videos, and, on average, had twice as much class time spent 

on Zoombinis bridging and gameplay than students in Low Zoombinis Bridging classes. 

We hypothesize that students in High Zoombinis Bridging classes will show greater improvement 

in their CT practices (as measured by IACT) than students in Low Zoombinis Bridging classes 

because of the importance of bridging we have found in prior research (Asbell-Clarke et al., 2019) 

and exit interviews with study teachers conducted by external evaluators (Barchas-Lichtenstein et 

al., 2019). 

3.5.3.2 Extent of Other CT Activities 

Most of the non-Zoombinis related CT activities reported by teachers centered around coding or 

programming activities. Teachers reported an approximate time of each class spent on coding or 

programming. The total amount of time spent across classes was summed using the minimum time 

in each range (i.e., 10–20 minutes became 10 minutes) to provide a conservative estimate. Each 

class was classified by whether or not it had less than 10 minutes devoted to coding across all 
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classes. Similarly, each class was labeled as having ever integrating block-based programming or 

Code.org activities. The remaining features used in this measure included the logging of the 

absence of Zoombinis bridging and gameplay.  

Table 6 presents the 10 final classroom features used to create two other CT activity clusters using 

K-Means. The Low Other CT Activity group consisted of 40 classrooms with relatively little time 

spent coding or programming, relatively little block-based programming, and very few classes 

without Zoombinis gameplay or bridging. The High Other CT Activity group included 14 

classrooms where teachers reported greater use of other CT activities, such as primarily 

coding/programming. 

 

Table 6: Other CT Activity Clustering Results 

 

Other CT Activity Feature 

Cluster Means 

Low (N=40) High (N=14) 

Sum of coding class time across all classes is less than 10 minutes 
50% 0% 

Any Block-Based programming Ever (1=Yes) 
38% 79% 

Any Hour of Code or Code.Org Activities Ever (1=Yes) 
5% 36% 

Sum of minimum class time on coding/programming activities (hours) 
0.4 3.5 

Sum of minimum class time on non-Zoombinis CT discussion (hours) 
0.3 0.5 

Computer Science course (1=Yes) 
10% 64% 

Percent class days no Zoombinis discussion 
22% 51% 

Percent class days no Zoombinis gameplay 
20% 49% 

# class days no Zoombinis activity (bridging or gameplay) 
2 9 
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Percent class days no Zoombinis activity 
14% 45% 

 

All t-test results were statistically significant at p<0.05 except the amount of class time spent on 

non-Zoombinis CT discussions where both clusters averaged less than an hour. Because of the 

strong association that is inherent between CT practices and coding/programming, we anticipate 

students in High Other CT Activity classrooms will improve more in their CT practices than 

students with more limited other CT activities such as coding/programming. 

In summary, cluster analysis identified two groups (High/Low) of classes along two different 

dimensions: the extent of Zoombinis Bridging, and the extent of Other CT Activity. 

3.6 Data Analysis 

Descriptive analyses examined relationships between the following sets of measures: 

 Student pre- and post-assessment scores (IACT Z-scores)  

 Student, classroom, teacher, and school demographics  

 The Duration of Student Gameplay  

 Student Gameplay CT Practices 

 Extent (high/low clustering) of Zoombinis bridging and other CT activities in classes. 

Multilevel models were chosen to account for any common variance in IACT post-assessment 

scores due to the clustering of students within classrooms. Using the SPSS MIXED linear models 

procedure, we estimated unconditional 2-level models with students nested within classrooms, 

using Restricted Maximum Likelihood (REML) and unstructured covariances. In unconditional 2-

level models, a statistically significant percentage of the variance was attributable to classroom 

level variation (16 percent). 

Sets of covariates were added to the unconditional 2-level models in this order: 
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Set 1. Pre-assessment score (IACT Z-score) & Grade Level (elementary or middle school). 

Set 2. Duration of Gameplay (High Student Gameplay Duration (> 2 hours) (1=Yes); and 

Average confidence of 5 detectors of Gameplay CT Practices from 3 puzzles (confidence 

between 0 and 1). 

Set 3. Classroom Activities: Extent of Zoombinis Bridging (1=High) and Extent of Other CT 

Activity (1=High). 

Set 4. Student, classroom, teacher, and school demographics: Student gender (1=Female) 

and whether or not the students were enrolled in a Title I school (1=Yes).  

Set 5. Interactions between Classroom Activity Clusters (Set 3).  

Set 6. Interactions between Classroom Activity Clusters and measures in the Sets 2 and 4. 

The variance explained by the model was compared as each covariate or interaction was added. 

Only covariates and interactions that significantly improved the fit of the model were retained in 

the results presented in this paper.  

4. Results 

4.1 Descriptive Results 

We conducted a series of independent t-tests to compare means between groups related to gender, 

student gameplay, and classroom activities. The Benjamini and Hochberg correction (Benjamini 

& Hochberg, 2000) was applied to control for multiple comparisons. As previously mentioned, we 

split students into the following two groups according to Student Gameplay Duration: High 

Student Gameplay Duration > 2 hours or Low Student Gameplay Duration < 2 hours (see Table 

7). There were proportionately few of the 668 students (22%) with High Student Gameplay 

Duration in classrooms with High Other CT Activities compared to almost three-quarters (73%) 

of the 48 students with Low Student Gameplay Duration who were in classrooms with High Other 
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CT Activities (p < 0.0001). There were no significant differences between the High and Low 

Student Gameplay Duration groups in the percentage of students belonging to the High Zoombinis 

Bridging clusters and Title 1 schools, both ps > 0.05. 

 

Table 7: Independent T-tests for Student Gameplay Duration  

 Student Gameplay Duration 

Covariate Low 

< 2 hours (N=48)  

High 

> 2 hours (N=668) 

Classroom Activity   

% High Zoombinis Bridging 35% 41% 

% High Other CT Activity* 73% 22% 

School    

% Enrolled in Title I Schools  38% 46% 

*Significant after Benjamini and Hochberg correction for multiple comparisons.  

 

Table 8 summarizes the results comparing means between Low and High Zoombinis Bridging 

groups. The High Zoombinis Bridging group had significantly fewer students enrolled in Title 1 

schools, p < 0.0001. Within the High Zoombinis Bridging group, the same proportion of students 

had Student Gameplay Duration < 2 hours as has Student Gameplay Duration >2 hours (p>0.05). 

Similarly, roughly a quarter of students in each Zoombinis Bridging group was also in a class with 

High Other CT Activities (p > 0.05).  
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Table 8: Independent T-tests for Extent of Zoombinis Bridging 

 Extent of Zoombinis Bridging 

Covariate Low (N=427) High (N=289) 

Student Gameplay    

Student Gameplay Duration (Hours)*  15.54 29.30 

% High Student Gameplay Duration 93% 94% 

Classroom Activity   

% High Other CT Activity 24% 27% 

School    

% Enrolled in Title I Schools*  52% 35% 

*Significant after Benjamini and Hochberg correction for multiple comparisons.  

 

We compared means between groups of Low and High Other CT Activity (see Table 9). The High 

Other CT Activity group had significantly fewer hours of Student Gameplay Duration, p <0.0001. 

The proportion of students belonging to High Student Gameplay Duration and Title 1 categories 

was significantly lower in the High Other CT Activity than the Low Other CT Activity group, all 

ps <0.05. There were no significant differences between groups in the percentage of students in 

the High Zoombinis Bridging group, p =0.29. 
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Table 9. Independent T-tests for Other CT Activity 

 Other CT Activity 

Covariate Limited (N=534) Extensive (N=182) 

Student Gameplay Duration   

Student Gameplay Duration (Hours)*  26.34 5.71 

% High Student Gameplay Duration*  98% 81% 

Classroom Activity   

% High Bridging 40% 43% 

School    

% Enrolled in Title I school*  43% 52% 

*Significant after Benjamini and Hochberg correction for multiple comparisons.  

 

4.2 Multilevel Modeling Results 

The best fitting multilevel model is presented in Table 10. The intercept indicates the IACT post-

score would be -0.78 when all covariates are 0—this would be a student who scored the overall 

mean IACT pre-assessment and all CT detectors were absent (confidence=0), played Zoombinis < 

2 hours, and was in a non-Title I school. The best-fitting model suggest that for every standard 

deviation increase in students’ scores on the IACT pre-assessment, their IACT post-assessment 

was 0.81 standard deviations higher. 
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Table 10: Best fitting multilevel model of estimated fixed effects with interactions on IACT Post 

Z-scores 

      

95% Confidence 

Interval 

Parameter Estimate 

Std. 

Error df t Sig. 

Lower 

Bound 

Upper 

Bound 

Intercept -0.78 0.16 432 -4.87 0.00 -1.09 -0.46 

IACT Pre-Assessment Z-Score 0.81 0.19 709 4.24 0.00 0.43 1.19 

High Student Gameplay Duration 

(1=Yes) -1.04 0.31 688 3.41 0.00 -1.64 -0.44 

Detector Confidence for Gameplay CT 

Practices  1.35 0.25 515 5.34 0.00 0.85 1.85 

High Student Gameplay Duration 

(1=Yes) * Detector Confidence for 

Gameplay CT Practices  
1.83 0.47 708 -3.88 0.00 0.90 2.76 

Pre-IACT Score (Z score) * Detector 

Confidence for Gameplay CT Practices  
-0.63 0.31 709 -2.03 0.046 -1.24 -0.01 

Title I School (1=Yes) 
-0.13 0.05 708 2.70 0.01 -0.23 -0.03 

N=716 students, 45 classes 

 

4.2.1 Student, Class, and School Demographics Results 

Students in Title I schools scored 0.13 standard deviations lower on their IACT post-assessment 

than students not in Title I schools. Once students’ gameplay duration and in-game behaviors were 

taken into account, there were no differences in IACT post-scores by student gender, grade level 

(elementary vs. middle school), duration of Bridging activities, or duration of other CT activities.  
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4.2.2 Duration of Student Gameplay Results 

Students who played Zoombinis > 2 hours performed worse than students who played <2 hours, 

although this relationship was moderated by their in-game behaviors. Figure 8 shows the 

difference in IACT post-scores between students with High and Low Student Gameplay Duration 

and those students: (1) whose CT behaviors were absent but exhibited evidence they were still 

learning the game mechanic; (2) whose CT behaviors and learning game mechanic confidences 

were at the mean level (confidence=0.62); and (3) whose CT behaviors were present and exhibited 

little evidence they were still learning the game mechanic. 

 
Figure 8: Interaction between Student Gameplay Duration and Student In-Game CT Detectors on 

students’ IACT Post Z-scores 

Note: Estimated means were evaluated at the following values: IACT Pre Z-Score = .0116.  
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Regardless of Student Gameplay Duration, students with no evidence of CT practices performed 

worse than students with mean confidences of 0.62 and 1. Among students with gameplay 

durations greater than 2 hours, this effect is more pronounced. These results suggest a mutually 

reinforcing relationship between the nature and extent of gameplay—the benefit of high levels of 

CT practices exhibited in their gameplay is enhanced with longer durations of gameplay.  

4.2.3 Student Gameplay CT Practices Results 

Students who demonstrated more evidence of CT Practices in their Zoombinis gameplay (as 

evidenced by higher average detector confidences) scored higher on the IACT post-assessment. 

This addresses research question 2 about the confidence of these detectors as predictors of CT 

Practices. If the Gameplay CT Practice detectors go from absent (confidence=0) to present 

(confidence=1), students’ IACT post-scores increased by 1.35 standard deviations. 

In addition to the significant interaction between the Duration of Student Gameplay and Gameplay 

CT Practices in Figure 6, Gameplay CT Practices were also moderated by student performance on 

the Pre-IACT assessment. Figure 9 shows the interaction between Student Pre-IACT scores and 

the average detector confidence of the Gameplay CT Practices on estimated mean IACT post-

scores. 
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Figure 9: Interaction between Student Pre-IACT Score and Gameplay CT Practices 

Note: Estimated means assumed Student Gameplay Duration and Title I school had a value of 0.5 

to estimate the mean for each group. 

 

We calculated estimated means at three levels of students’ Gameplay CT Practices:  

 Absent Gameplay CT Practices—where the mean confidence of students’ demonstration 

of behaviors consistent with CT practices was 0.  

 Mean Gameplay CT Practices—where students’ demonstration of behaviors consistent 

with CT practices was at the group mean confidence (0.62). 

 Present Gameplay CT Practices—where the mean confidence of students’ demonstration 

of behaviors consistent with CT practices was 1. 

Regardless of students’ Pre-IACT scores, students who exhibited more Gameplay CT Practices 

performed better than those who exhibited less Gameplay CT practices. It is worth noting that 
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students who began the study with Pre-IACT scores close to the group mean yet exhibited high 

levels of Gameplay CT practices had higher Post-IACT scores than students who began the study 

with Pre-IACT scores 1 standard deviation above the mean who exhibited no Gameplay CT 

Practices. This is also true of students who scored 1 standard deviation below the mean on the Pre-

IACT. They performed just as well as students with Pre-IACT scores at the mean who exhibited 

no Gameplay CT Practices. 

Once both interactions with Gameplay CT Practices are combined into one model (Figure 10), it 

becomes clear that students who spent more than 2 hours playing Zoombinis but had no evidence 

of Gameplay CT Practices performed worse than other groups, regardless of their IACT Pre-Score. 

The only groups of students with positive changes in IACT scores were those who exhibited 

Gameplay CT Practices, with longer Student Gameplay Durations enhancing the impact of their 

gameplay. Among students scoring 1 standard deviation below the mean on their IACT Pre-Score, 

students who exhibited Gameplay CT Practices and played for more than 2 hours had scores close 

to the mean performance (Estimated Mean=0). 
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Figure 10: Interaction between students IACT Pre Z-Scores, Student Gameplay Duration, and 

Gameplay CT Practices on students’ IACT Post Z-scores 

Note: Estimated means were evaluated with Title I=0.5. 

 

4.2.4 Classroom Activity Results 

Once all of these covariates and interactions were taken into account, there were no differences in 

IACT post-scores by extent of Zoombinis Bridging. The lack of a bridging impact is contrary to 

our previous research (Asbell-Clarke et al., 2019) and to findings from teacher interviews by the 

external evaluator of the Zoombinis implementation study, where teachers perceived a beneficial 

effect on CT from gameplay and bridging activities. 

 

5. Discussion 

This study investigated the impact of the CT learning game Zoombinis and related classroom 

activities on the CT practices of students in grades 3–8. The study also examined the ability of the 
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automated detectors of Gameplay CT Practices to confidently predict student development of CT 

practices. As expected, we found significant relationships between the duration of Zoombinis 

gameplay, the CT practices demonstrated during gameplay, and improvements in students’ IACT 

scores. This is consistent with literature that shows that well-crafted learning games can be 

effective in promoting student learning (Clark, Tanner-Smith, & Killingsworth, 2016), particularly 

in areas of complex problem-solving (Eseryel, Law, Ifenthaler, Ge, & Miller, 2014; Kang, Liu, & 

Qu, 2017). We also found many factors that did not influence student performance, including 

student gender, grade level (elementary vs. middle school), and surprisingly, the extent of 

Zoombinis bridging activities used in class, as well as the extent of other CT activities. This last 

finding counters our previous research that showed the importance of teacher activity in making 

implicit game-based science learning explicit outside the game (Asbell-Clarke et al., 2019).  

Contributing to the growing literature in game-based learning assessments (Mislevy et al., 2016; 

Shute, Ke, & Wang, 2017), we built and studied automated detectors of implicit CT practices based 

upon extensive human analysis of Zoombinis gameplay. These detectors were indeed able to 

predict student development of CT practices with confidence. Those students who demonstrated 

high gameplay CT practices as measured by the detectors also had higher scores on the external 

post-assessments of CT practices when accounting for pre-assessment scores.  

As hypothesized, this study shows that students who had longer durations of gameplay in 

Zoombinis performed better than those with shorter durations of gameplay. In addition, those 

students who showed a higher level of CT practices within their gameplay also performed better 

than those demonstrating lower level of CT practices in their gameplay. Moreover, there is an 

amplifying interaction between these two effects. Students who played for longer durations and 

exhibited more CT practices in their gameplay performed significantly better than all other groups. 
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Among students who exhibited relatively fewer CT practices in their gameplay, there was little 

difference in post-assessment scores regardless of how long they played. 

We also examined the types of classroom activities that may influence the impact of Zoombinis on 

students’ CT practices. Classroom activity was grouped along two dimensions: extent of 

Zoombinis Bridging (using specified Zoombinis bridging activities), and extent of Other CT 

Activity. There were no differences in students’ scores because of the extent of Zoombinis 

Bridging activity or Other CT Activity. This is contrary to findings in our previous studies (Asbell-

Clarke et al., 2019) where teacher bridging was key to the impact of game-based learning in the 

classroom. It is possible that Zoombinis is a more “self-contained” learning game and so it is able 

to support students’ transfer of implicit game-based learning to explicit classroom learning without 

the necessity of teacher bridging. It also may be that the classroom bridging activities have the 

greatest impact on students’ Gameplay CT Practices, and duration of bridging matters less once 

student gameplay behaviors are taken into account. The assessments we used in this study were 

game-like enough that students were able to make that transfer of CT practices from one 

application to another more easily. Further study is necessary to see if the implicit CT practices 

demonstrated in Zoombinis can translate into other CT applications such as improved coding, 

without teacher bridging activities. In summary, overall the students who played Zoombinis more 

and played it using CT practices performed better on post assessments, after accounting for pre-

assessment scores. These results reveal that automated detectors of CT practices in student 

gameplay logs show promise as formative learning assessments to measure the development of 

student CT practices. 
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6. Risks and Limitations 

We faced several limitations in the design of our study because of the young state of the CT field 

at the point of this research. Because CT was not taught commonly in schools at the time of the 

study, it was impossible to find a control group with an adequate number of classes that would 

consistently cover the same CT practices within a different context. 

Also because of the immaturity of the field of CT education at these grade bands, we could not 

rely on an established set of measures for our pre/post assessments of CT practices. We therefore 

designed our own set of assessments, IACT, and conducted appropriate validity and reliability 

analyses (Asbell-Clarke et al., in review). These assessments, however, are not optimal and could 

use improvement for future research. 

The assessment data was collected through an online set of logic puzzles. Only data for students 

who completed the pre- and post-assessments are included. This removed about 39% of the initial 

sample. We cannot distinguish in our data logs if an assessment timed-out because there were 

connectivity issues or if a student was struggling. Because we had to remove those data from the 

sample, we may have biased the sample towards students who did not struggle on the assessment. 

This is an important concern because in teacher study exit interviews, our external evaluators found 

many teachers reported that it was their students with academic struggles who became leaders in 

Zoombinis activities (Barchas-Lichtenstein, et al., 2019). The students who may benefit most from 

Zoombinis may be underrepresented in our final sample. 

Preliminary examination of measurement invariance of these CT assessments suggest the 

elementary and middle school forms have a similar structure across time. The test-retest and 

concurrent validity analyses suggest the forms may be valid and reliable for elementary students.  

There are several limitations of these analyses.  First, there was an intervention between the pre 
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and post assessment.  This intervention may have been differentially effective for elementary vs. 

middle school students.  This might explain why there was more variability across time in one 

form than the other.  Second, elementary teachers spend more time with their students than middle 

school teachers.  This might allow the elementary ratings to be more accurate (more highly 

correlated) than the middle school ratings.  These limitations should be born in mind when 

interpreting these results. 

Finally, we were reliant on teachers’ self-reporting to understand the extent and nature of 

classroom activities that may have influenced the study. While the teacher reports we received 

were detailed, we assumed teachers who did not report Other CT Activities did not do them. This 

may not be the case if teachers assumed, contrary to instructions, we only wanted to know about 

Zoombinis-related Bridging activities. Thus, the lack of relationship between Other CT Activities 

and students’ IACT post-scores may be related to differences in teachers reporting and not the 

nature of the Other CT Activity itself. 

7. Conclusion 

In a field as young as CT, there are many moving parts to establishing productive lines of research. 

This study of the learning game Zoombinis, in 45 elementary- and middle-school classrooms in 

the US, advances knowledge in this exciting research field in a number of ways. 

This paper not only reports in detail on the extent and nature of a multitude of CT activities taking 

place in these classrooms, we also have shown a novel form of implicit learning assessments 

deploying automated data-mining detectors can be used to measure how students build CT 

practices within the game. We were able to show that it is not only how much children play this 

powerful learning game that matters, it is also how they play the game. 
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We were surprised to find that Zoombinis gameplay alone without teacher bridging was related to 

improved CT practices. This finding, however, is contrary to what teachers reported to external 

evaluators in their study exit interviews (Barchas-Lichtenstein et al., 2019). We believe further 

research is needed to develop easy-to-administer, standardized measures of bridging, and to better 

understand the role of games and teachers in the classroom at scale as there is considerable 

evidence that teachers make a key difference in game-based learning classrooms (Asbell-Clarke 

et al., 2019). 
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